Special values of shifted convolution Dirichlet series
نویسندگان
چکیده
In a recent important paper, Hoffstein and Hulse [14] generalized the notion of Rankin-Selberg convolution L-functions by defining shifted convolution L-functions. We investigate symmetrized versions of their functions, and we prove that the generating functions of certain special values are linear combinations of weakly holomorphic quasimodular forms and “mixed mock modular” forms.
منابع مشابه
Asymptotic bounds for special values of shifted convolution Dirichlet series
In [15], Hoffstein and Hulse defined the shifted convolution series of two cusp forms by “shifting” the usual Rankin-Selberg convolution L-series by a parameter h. We use the theory of harmonic Maass forms to study the behavior in h-aspect of certain values of these series and prove a polynomial bound as h → ∞. Our method relies on a result of Mertens and Ono [22], who showed that these values ...
متن کاملp-ADIC PROPERTIES OF MODULAR SHIFTED CONVOLUTION DIRICHLET SERIES
Ho stein and Hulse recently introduced the notion of shifted convolution Dirichlet series for pairs of modular forms f1 and f2. The second two authors investigated certain special values of symmetrized sums of such functions, numbers which are generally expected to be mysterious transcendental numbers. They proved that the generating functions of these values in the h-aspect are linear combinat...
متن کاملLinear dependence of certain L-values of half-integral weight modular forms
(for the precise definition of ω, see Section 2.) The analytic properties of this Dirichlet series were investigated by Shimura [12] (see also Mizuno, [10].) Furthermore the algebraicity of the values of this Dirichlet serries evaluated at halfintegers was deeply investigated by Shimura [12]. However, as far as we know, there is no result about the algebraicity of its special values at integers...
متن کاملConvolution Dirichlet Series and a Kronecker Limit Formula for Second-order Eisenstein Series
In this article we derive analytic and Fourier aspects of a Kronecker limit formula for second-order Eisenstein series. Let Γ be any Fuchsian group of the first kind which acts on the hyperbolic upper half-space H such that the quotient Γ\H has finite volume yet is non-compact. Associated to each cusp of Γ\H, there is a classically studied first-order non-holomorphic Eisenstein series E(s, z) w...
متن کاملMoments of zeta and correlations of divisor-sums: IV
In this series we examine the calculation of the 2kth moment and shifted moments of the Riemann zeta-function on the critical line using long Dirichlet polynomials and divisor correlations. The present paper begins the general study of what we call Type II sums which utilize a circle method framework and a convolution of shifted convolution sums to obtain all of the lower order terms in the asy...
متن کامل